Autumn 2021 Optimization \& Machine Learning Talk I

Computing the Distance Between Probability Measures: Wasserstein vs. Fisher-Rao

Axel G. R. Turnquist
NJIT Department of Mathematical Sciences

September 1, 2021

Applications

- Comparing images
- Finding closeness of data fit
- Optimization algorithms
- Shape analysis
- Wasserstein GAN

Why L^{2} is Inappropriate

Distance between $\mu=\operatorname{Unif[0,1]}$ and $\nu=\operatorname{Unif}[2,3]$ vs.
$\mu=\operatorname{Unif}[0,1]$ and Unif[a, a +1$]$.

L^{2}-distance is the same for both cases. L^{2} only measures vertical distance, does not take in any horizontal distance into account.

First Real Analysis Idea: Total Variation

Maybe we can compute

$$
\begin{equation*}
\operatorname{dist}(\mu, \nu)=\|\mu-\nu\|_{\mathrm{TV}} \tag{1}
\end{equation*}
$$

In 1D, the total variation of a real-valued function f on an interval $[a, b]$ is:

$$
\begin{equation*}
\|f\|_{\mathrm{TV}[a, b]}=\sup _{\mathcal{P}} \sum_{i=0}^{n_{P}}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| \tag{2}
\end{equation*}
$$

and one can see how the horizontal distance is taken into account.

Total Variation Continued

For probability measures μ and ν, the total variation between them is defined as:

$$
\begin{equation*}
\|\mu-\nu\|_{\mathrm{TV}}=2 \sup \{|\mu(A)-\nu(A)|: A \in \Sigma\} \tag{3}
\end{equation*}
$$

Goal: want a notion of interpolation. Need a manifold (metric) structure.

L2

Wasserstein

Ideal Interpolation

Metric vs. Distance

On a manifold, what is a metric? For finite-dimensional manifolds, a metric is like a positive definite matrix $A>0$. It tells us what a dot product and magnitude are:

$$
\begin{gather*}
u \cdot v=u^{T} A v \tag{4}\\
\|u\|_{A}=\sqrt{u \cdot u}=\sqrt{u^{T} A u} \tag{5}
\end{gather*}
$$

which defines the speed of a path $\gamma(t)$

$$
\begin{equation*}
\|\gamma(t)\|_{A}=\sqrt{\dot{\gamma}^{T} A \dot{\gamma}} \tag{6}
\end{equation*}
$$

This then gives us a notion of distance between $\gamma(0)=a$ and $\gamma(1)=b$:

$$
\begin{equation*}
\operatorname{dist}(\gamma(0), \gamma(1)):=\inf _{\gamma: \gamma(0)=a, \gamma(1)=b} \int_{0}^{1}|\dot{\gamma}(s)| d s \tag{7}
\end{equation*}
$$

Wasserstein Distance

The optimal transport problem uses the change of variables formula from Calculus. That is, given two probability measures μ and ν and a diffeomorphic mapping T, such that $T_{\#} \mu=\nu$:

$$
\begin{equation*}
\int_{A} \mu(x)=\int_{A} \nu(T(x)) J_{T}(x) \tag{8}
\end{equation*}
$$

for all measurable $A \subset \Omega$ where J designates the Jacobian of the mapping T.

Wasserstein Distance

Now we compute the horizontal distance by finding the map T that takes the least amount of work to move from a point x to y, like "shoveling dirt":

$$
\begin{equation*}
\operatorname{dist}(\mu, \nu)=\inf _{T} \int_{\mathbb{R}^{n}} c(x, T) d \mu(x) \tag{9}
\end{equation*}
$$

such that T satisfies the change of variables formula:

$$
\begin{equation*}
\int_{A} \mu(x)=\int_{A} \nu(T(x)) J_{T}(x) \tag{10}
\end{equation*}
$$

This represents a calculus of variations problem with an equality constraint. We get a distance by choosing $c(x, y)=d_{M}(x, y)^{2}$.

Wasserstein Interpolation

This Wasserstein distance is actually way better than it initially seems. Defines a manifold structure on the space of probability measures on M ! This gives us a metric, notion of Calculus, and interpolation, etc. Let $T_{t}=t T+(1-t) \mathrm{Id}$. Then,

$$
\begin{equation*}
\mu_{t}=T_{t \#} \mu \tag{11}
\end{equation*}
$$

defines the Wasserstein interpolation and $\mu_{1}=\nu$. The interpolation of two Gaussians is a Gaussian.

First Statistical Idea: KL Divergence

The Kullback-Liebler divergence is also known as the relative entropy. The KL divergence $D_{\mathrm{KL}}(\mu, \nu)$ represents the "surprise" one receives in observing samples from ν when one actually expects samples from μ :

$$
\begin{equation*}
D_{\mathrm{KL}}(\mu, \nu)=\int_{\Omega} \log \left(\frac{d \mu}{d \nu}\right) d \mu \tag{12}
\end{equation*}
$$

Note: not a distance! If we can parametrize μ, ν by a parameter θ, then the Hessian of the KL divergence is known as the Fisher information metric:

$$
\begin{equation*}
g_{j k}(\theta)=\int_{X} \frac{\partial \log p(x, \theta)}{\partial \theta_{j}} \frac{\partial \log p(x, \theta)}{\partial \theta_{k}} p(x, \theta) d x \tag{13}
\end{equation*}
$$

Fisher-Rao

This Fisher information metric defines a Riemannian structure (means you can do Calculus) on the infinite-dimensional manifold of probability distributions $\mathcal{P}(M)$. Using an explicit formula for the geodesics on the Fisher-Rao manifold, one gets the Fisher-Rao distance:

$$
\begin{equation*}
\operatorname{dist}(\mu, \nu)=\sqrt{\operatorname{vol}(M)} \arccos \left(\frac{1}{\operatorname{vol}(M)} \int_{M} \sqrt{\frac{\mu}{\mathrm{vol}} \frac{\nu}{\mathrm{vol}}} \mathrm{vol}\right) \tag{14}
\end{equation*}
$$

In general, deriving a formula for the Fisher-Rao distance is difficult (e.g. $M=\mathbb{R}^{d}$).

We Can Get Bounds!

Happily, we can relate these with inequalities for $\mu, \nu \in \operatorname{Dens}(M)$, the space of smooth densities strictly bounded away from zero on a compact manifold M :

$$
\begin{align*}
\frac{\operatorname{dist}_{W}(\mu, \nu)}{\operatorname{diam}(M)} & \leq \operatorname{dist}_{\mathrm{FR}}(\mu, \nu) \tag{15}\\
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu) & \leq \operatorname{dist}_{\mathrm{FR}}(\mu, \nu) \tag{16}\\
\operatorname{dist}_{\mathrm{FR}}(\mu, \nu) & \leq \sqrt{\frac{\pi}{2} \operatorname{dist}_{\mathrm{KL}}(\mu, \nu)} \tag{17}
\end{align*}
$$

Discussion

Wasserstein:

- In general result is not a mapping T but a joint probability distribution π
- Hard to compute in higher-dimensions (curse of dimensionality)
- Regularity issues on some manifolds M, but behaves well for \mathbb{R}^{d}

Fisher-Rao:

- Naturally used in information geometry
- Not good for image interpolation

Source

Target

Questions?

Highlighted Resources

- "Optimal Transport: Old and New" Cedric Villani
- "Topics in Optimal Transport" Cedric Villani
- "Diffeomorphic density matching by optimal information transport" Martin Bauer, Sarang Joshi \& Klas Modin
- "On Choosing and Bounding Probability Metrics" Alison Gibbs \& Francis Su
- "Computational Optimal Transport" , Gabriel Peyré \& Marco Cuturi

Future Talks

Next Talk:

September 9: Binan Gu "Discrete Optimal Control on Graphs"

