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Applications

I Comparing images

I Finding closeness of data fit

I Optimization algorithms

I Shape analysis

I Wasserstein GAN
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Why L2 is Inappropriate

Distance between µ = Unif[0, 1] and ν = Unif[2, 3] vs.
µ = Unif[0, 1] and Unif[a, a + 1].

L2-distance is the same for both cases. L2 only measures vertical
distance, does not take in any horizontal distance into account.
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First Real Analysis Idea: Total Variation

Maybe we can compute

dist(µ, ν) = ‖µ− ν‖TV (1)

In 1D, the total variation of a real-valued function f on an interval
[a, b] is:

‖f ‖TV[a,b] = sup
P

nP∑
i=0

|f (xi+1)− f (xi )| (2)

and one can see how the horizontal distance is taken into account.
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Total Variation Continued

For probability measures µ and ν, the total variation between them
is defined as:

‖µ− ν‖TV = 2 sup {|µ(A)− ν(A)| : A ∈ Σ} (3)

Goal: want a notion of interpolation. Need a manifold (metric)
structure.
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Ideal Interpolation
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Metric vs. Distance
On a manifold, what is a metric? For finite-dimensional manifolds,
a metric is like a positive definite matrix A > 0. It tells us what a
dot product and magnitude are:

u · v = uTAv (4)

‖u‖A =
√
u · u =

√
uTAu (5)

which defines the speed of a path γ(t)∥∥∥ ˙γ(t)
∥∥∥
A

=
√
γ̇TAγ̇ (6)

This then gives us a notion of distance between γ(0) = a and
γ(1) = b:

dist(γ(0), γ(1)) := inf
γ:γ(0)=a,γ(1)=b

∫ 1

0
|γ̇(s)| ds (7)
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Wasserstein Distance
The optimal transport problem uses the change of variables
formula from Calculus. That is, given two probability measures µ
and ν and a diffeomorphic mapping T , such that T#µ = ν:∫

A
µ(x) =

∫
A
ν(T (x))JT (x) (8)

for all measurable A ⊂ Ω where J designates the Jacobian of the
mapping T .
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Wasserstein Distance

Now we compute the horizontal distance by finding the map T
that takes the least amount of work to move from a point x to y ,
like “shoveling dirt”:

dist(µ, ν) = inf
T

∫
Rn

c(x ,T )dµ(x) (9)

such that T satisfies the change of variables formula:∫
A
µ(x) =

∫
A
ν(T (x))JT (x) (10)

This represents a calculus of variations problem with an equality
constraint. We get a distance by choosing c(x , y) = dM(x , y)2.
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Wasserstein Interpolation
This Wasserstein distance is actually way better than it initially
seems. Defines a manifold structure on the space of probability
measures on M! This gives us a metric, notion of Calculus, and
interpolation, etc. Let Tt = tT + (1− t)Id. Then,

µt = Tt#µ (11)

defines the Wasserstein interpolation and µ1 = ν. The
interpolation of two Gaussians is a Gaussian.
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First Statistical Idea: KL Divergence

The Kullback-Liebler divergence is also known as the relative
entropy. The KL divergence DKL(µ, ν) represents the “surprise”
one receives in observing samples from ν when one actually
expects samples from µ:

DKL(µ, ν) =

∫
Ω

log

(
dµ

dν

)
dµ (12)

Note: not a distance! If we can parametrize µ, ν by a parameter
θ, then the Hessian of the KL divergence is known as the Fisher
information metric:

gjk(θ) =

∫
X

∂ log p(x , θ)

∂θj

∂ log p(x , θ)

∂θk
p(x , θ)dx (13)
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Fisher-Rao

This Fisher information metric defines a Riemannian structure
(means you can do Calculus) on the infinite-dimensional manifold
of probability distributions P(M). Using an explicit formula for the
geodesics on the Fisher-Rao manifold, one gets the Fisher-Rao
distance:

dist(µ, ν) =
√

vol(M) arccos

(
1

vol(M)

∫
M

√
µ

vol

ν

vol
vol

)
(14)

In general, deriving a formula for the Fisher-Rao distance is
difficult (e.g. M = Rd).
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We Can Get Bounds!

Happily, we can relate these with inequalities for µ, ν ∈ Dens(M),
the space of smooth densities strictly bounded away from zero on a
compact manifold M:

distW (µ, ν)

diam(M)
≤ distFR(µ, ν) (15)

distTV(µ, ν) ≤ distFR(µ, ν) (16)

distFR(µ, ν) ≤
√
π

2
distKL(µ, ν) (17)
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Discussion
Wasserstein:

I In general result is not a mapping T but a joint probability
distribution π

I Hard to compute in higher-dimensions (curse of
dimensionality)

I Regularity issues on some manifolds M, but behaves well for
Rd

Fisher-Rao:

I Naturally used in information geometry
I Not good for image interpolation
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Questions?
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Highlighted Resources

I “Optimal Transport: Old and New” Cedric Villani

I “Topics in Optimal Transport” Cedric Villani

I “Diffeomorphic density matching by optimal information
transport” Martin Bauer, Sarang Joshi & Klas Modin

I “On Choosing and Bounding Probability Metrics” Alison
Gibbs & Francis Su

I “Computational Optimal Transport” , Gabriel Peyré & Marco
Cuturi
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Future Talks

Next Talk:

September 9: Binan Gu
“Discrete Optimal Control on

Graphs”


